
人教版初一數學下冊知識點歸納總結1
初一數學下冊期末考試知識點總結一(蘇教版)
第七章平面圖形的認識(二)1
第八章冪的運算2
第九章整式的乘法與因式分解3
第十章二元一次方程組4
第十一章一元一次不等式4
第十二章證明9
第七章平面圖形的認識(二)
一、知識點:
1、“三線八角”
①如何由線找角:一看線,二看型。
同位角是“F”型;
內錯角是“Z”型;
同旁內角是“U”型。
②如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。
簡述:平行于同一條直線的兩條直線平行。
補充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。
簡述:垂直于同一條直線的兩條直線平行。
3、平行線的判定和性質:
判定定理性質定理
條件結論條件結論
同位角相等兩直線平行兩直線平行同位角相等
內錯角相等兩直線平行兩直線平行內錯角相等
同旁內角互補兩直線平行兩直線平行同旁內角互補
4、圖形平移的性質:
圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關系:
三角形的任意兩邊之和大于第三邊;
三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,
則
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:①三角形的高、角平分線、中線都是線段。
②高、角平分線、中線的應用。
7、三角形的內角和:
三角形的3個內角的和等于180°;
直角三角形的兩個銳角互余;
三角形的一個外角等于與它不相鄰的兩個內角的和;
三角形的一個外角大于與它不相鄰的任意一個內角。
8、多邊形的內角和:
n邊形的內角和等于(n-2)180°;
任意多邊形的外角和等于360°。
第八章冪的運算
冪(p5
人教版初一數學下冊知識點歸納總結2
1、整式的乘除的公式運用(六條)及逆運用(數的計算)。
(1)an·am2)(am)n=(3)(ab)n=4)am÷an
(5)a0(a≠0)(6)a-p==
2、單項式與單項式、多項式相乘的法則。
3、整式的乘法公式(兩條)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2(a-b)2
常用公式:(x+m)(x+n)=
5、單項式除以單項式,多項式除以單項式(轉換單項式除以單項式)。
6、互為余角和互為補角和
7、兩直線平行的條件:(角的關系線的平行)①相等,兩直線平行;
②相等,兩直線平行;
③互補,兩直線平行.
8、平行線的性質:兩直線平行。(線的平行
9、能判別變量中的自變量和因變量,會列列關系式(因變量=自變量與常量的關系)
10、變量中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什么意義
(3)圖象交點表示什么意義(4)會求平均值。
11、三角形(1)三邊關系:角的關系)
(2)內角關系:
(3)三角形的三條重要線段:
(重點)(4)三角形全等的判別方法:(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)
(5)全等三角形的性質:
(重點)(6)等腰三角形:(a)知邊求邊、周長方法
(b)知角求角方法
(c)三線合一:
(7)等邊三角形:
12、會判軸對稱圖形,會根據畫對稱圖形,(或在方格中畫)
13、常見的軸對稱圖形有:
14、
(1)等腰三角形:對稱軸,性質
(2)線段:對稱軸,性質
(3)角:對稱軸,性質
15、尺規作圖:(1)作一線段等已知線段(2)作角已知角(3)作線段垂直平分線
(4)作角的平分線(5)作三角形
16、事件的分類:,會求各種事件的概率
(1)摸球:P(摸某種球)=
(2)摸牌:P(摸某種牌)=
(3)轉盤:P(指向某個區域)=
(4)拋骰子:P(拋出某個點數)=
(5)方格(面積):P(停留某個區域)=
17、必然事件不可能事件,不確定事件
18、方法歸納:(1)求邊相等可以利用
(2)求角相等可以利用。
(3)計算簡便可以利用。
19、注意復習:合并同類項的法則,科學記數法,解一元一次方程,絕對值。
人教版初一數學下冊知識點歸納總結3
平行線與相交線
一、互余、互補、對頂角
1、相加等于90°的兩個角稱這兩個角互余。性質:同角(或等角)的余角相等。
2、相加等于180°的兩個角稱這兩個角互補。性質:同角(或等角)的補角相等。
3、兩條直線相交,有公共頂點但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。對頂角的性質:對頂角相等。
4、兩條直線相交,有公共頂點且有一條公共邊的兩個角互為鄰補角。(相鄰且互補)
二、三線八角:兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(旁)的兩個角叫做同位角。
②在兩直線之間(內部),在第三條直線的兩側(旁)的兩個角叫做內錯角。
③在兩直線之間(內部),在第三條直線的同側(旁)的兩個角叫做同旁內角。
三、平行線的判定
①同位角相等
②內錯角相等兩直線平行
③同旁內角互補
四、平行線的性質
①兩直線平行,同位角相等。
②兩直線平行,內錯角相等。
③兩直線平行,同旁內角互補。
五、尺規作圖(用圓規和直尺作圖)
①作一條線段等于已知線段。
②作一個角等于已知角。
生活中的軸對稱
一、軸對稱圖形與軸對稱
①一個圖形沿某一條直線對折,直線兩旁的部分能完成重合的圖形叫做軸對稱圖形。這條直線叫做對稱軸。
②兩個圖形沿某一條直線折疊,這兩個圖形能完全重合,就說這兩個圖形關于這條直線成軸對稱。這條直線叫做對稱軸。
③常見的軸對稱圖形:線段(兩條對稱軸),角,長方形,正方形,等腰三角形,等邊三角形,等腰梯形,圓,扇形
二、角平分線的性質:角平分線上的點到角兩邊的距離相等。
∵∠1=∠2PB⊥OBPA⊥OA
∴PB=PA
三、線段垂直平分線:
①概念:垂直且平分線段的直線叫做這條線段的垂直平分線。
②性質:線段垂直平分線上的點到線段兩個端點的距離相等。
∵OA=OBCD⊥AB
∴PA=PB
四、等腰三角形性質:(有兩條邊相等的三角形叫做等腰三角形)
①等腰三角形是軸對稱圖形;(一條對稱軸)
②等腰三角形底邊上中線,底邊上的高,頂角的平分線重合;(三線合一)
③等腰三角形的兩個底角相等。(簡稱:等邊對等角)
五、在一個三角形中,如果有兩個角相等,那么它所對的兩條邊也相等。(簡稱:等角對等邊)
六、等邊三角形的性質:等邊三角形是特殊的等腰三角形,它具有等腰三角形的所有性質。
①等邊三角形的三條邊相等,三個角都等于60;
②等邊三角形有三條對稱軸。
七、軸對稱的性質:
①關于某條直線對稱的兩個圖形是全等形;
②對應線段、對應角相等;
②對應點的連線被對稱軸垂直且平分;
④對應線段如果相交,那么交點在對稱軸上。
八、鏡子改變了什么:
1、物與像關于鏡面成軸對稱;(分清左右對稱與上下對稱)
2、常見的問題:①物體成像問題;②數字與字母成像問題;③時鐘成像問題
三角形
一、認識三角形
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形。
2、三角形三邊的關系:兩邊之和大于第三邊;兩邊之差小于第三邊。
(已知三條線段確定能否組成三角形,已知兩邊求第三邊的取值范圍)
3、三角形的內角和是180°;直角三角形的兩銳角互余。
銳角三角形(三個角都是銳角)
4、三角形按角分類直角三角形(有一個角是直角)
鈍角三角形(有一個角是鈍角)
5、三角形的特殊線段:
a)三角形的中線:連結頂點與對邊中點的線段。(分成的兩個三角形面積相等)
b)三角形的角平分線:內角平分線與對邊的交點到內角所在的頂點的線段。
c)三角形的高:頂點到對邊的垂線段。(每一種三角形的作圖)
二、全等三角形:
1、全等三角形:能夠重合的兩個三角形。
2、全等三角形的性質:全等三角形的對應邊、對應角相等。
3、全等三角形的判定:
判定方法
內容
簡稱
邊邊邊
三邊對應相等的兩個三角形全等
SSS
邊角邊
兩邊與這兩邊的夾角對應相等的兩個三角形全等
SAS
角邊角
兩角與這兩角的夾邊對應相等的兩個三角形全等
ASA
角角邊
兩角與其中一個角的對邊對應相等的兩個三角形全等
AAS
斜邊直角邊
斜邊與一條直角邊對應相等的兩個直角三角形全等
HL
注意:三個角對應相等的兩個三角形不能判定兩個三角形形全等;AAA
兩條邊與其中一條邊的對角對應相等的.兩個三角形不能判定兩個三角三角形全等。SSA
4、全等三角形的證明思路:
條件
下一步的思路
運用的判定方法
已經兩邊對應相等
找它們的夾角
SAS
找第三邊
SSS
已經兩角對應相等
找它們的夾邊
ASA
找其中一個角的對邊
AAS
已經一角一邊
找另一個角
ASA或AAS
找另一邊
SAS
5、三角形具有穩定性,
三、作三角形
1、已經三邊作三角形
2、已經兩邊與它們的夾角作三角形
3、已經兩角與它們的夾邊作三角形(已經兩角與其中一角的對邊轉化成這種情況)
4、已經斜邊與一條直角邊作直角三角形
人教版初一數學下冊知識點歸納總結4
正數和負數
⒈、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數
1、有理數的概念
(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
(2)正分數和負分數統稱為分數
(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。
人教版初一數學下冊知識點歸納總結5
1.同一平面內,兩直線不平行就相交。
2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互
為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其
中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。4.垂直三要素:垂直關系,垂直記號,垂足
5.垂直公理:過一點有且只有一條直線與已知直線垂直。6.垂線段最短;
7.點到直線的距離:直線外一點到這條直線的垂線段的長度。8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側),內錯角Z(在
兩條直線內部,位于第三條直線兩側),同旁內角U(在兩條直線內部,位于第三條直線同側)。9.平行公理:過直線外一點有且只有一條直線與已知直線平行。
10.如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//cP174題
11.平行線的判定。結論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。平行線的性質:
1.兩直線平行,同位角相等。2.兩直線平行,內錯角相等。3.兩直線平行,同旁內角互補。
12.★命題:“如果+題設,那么+結論。”
三角形和多邊形
1.三角形內角和為180°
2.構成三角形滿足的條件:三角形兩邊之和大于第三邊。
判斷方法:在△ABC中,a、b為兩短邊,c為長邊,如果a+b>c則能構成三角形,否則(a+bc)不能構成三角形(即三角形最短的兩邊之和大于最長的邊)
3.三角形邊的取值范圍:三角形的任一邊:小于兩邊之和,大于兩邊之差(的絕對值)【重點題目】三角形的兩邊分別為3和7,則三角形的第三邊的取值范圍為4.等面積法:三角形面積1底高,三角形有三條高,也就對應有三條底邊,任取其中一組底和高,21三角形同一個面積公式就有三個表示方法,任取其中兩個寫成連等(可兩邊同時2消去)底高
2底高,知道其中三條線段就可求出第四條。例如:如圖1,在直角△ABC中,ACB=900,CD
是斜邊AB
上的高,則有ACBCCDAB
A
CB1D【重點題目】P708題例直角三角形的三邊長分別為3、4、5,則斜邊上的高為5.等高法:高相等,底之間具有一定關系(如成比例或相等)
【例】AD是△ABC的中線,AE是△ABD的中線,SABC4cm2,則SABE=6.三角形的特性:三角形具有【重點題目】P695題7.外角:
【基礎知識】什么是外角?外角定理及其推論【重點題目】P75例2P765、6、8題8.n邊形的★內角和★外角和√對角線條數為
【基礎知識】正多邊形:各邊相等,各角相等;正n邊形每個內角的度數為【重點題目】P83、P84練習1,2,3;P843,4,5,6;P904、5題9.√鑲嵌:圍繞一個拼接點,各圖形組成一個周角(不重疊,無空隙)。
單一正多邊形的鑲嵌:鑲嵌圖形的每個內角能被360整除:只有6個等邊三角形(60),4個正方形(90),3個正六邊形(120)三種
(兩種正多邊形的)混合鑲嵌:混合鑲嵌公式nm3600:表示n個內角度數為的正多邊形與
0000m個內角度數為的正多邊形圍繞一個拼接點組成一個周角,即混合鑲嵌。
【例】用正三角形與正方形鋪滿地面,設在一個頂點周圍有m個正三角形、n個正方形,則m,n的值分別為多少?
平面直角坐標系
▲基本要求:在平面直角坐標系中1.給出一點,能夠寫出該點坐標2.給出坐標,能夠找到該點
▲建系原則:原點、正方向、橫縱軸名稱(即x、y)
√語言描述:以…(哪一點)為原點,以…(哪一條直線)為x軸,以…(哪一條直線)為y軸建立直角坐標系
▲基本概念:有順序的兩個數組成的數對稱為(有序數對)【三大規律】1.平移規律★
點的平移規律(P51歸納)
例將P(2,3)向左平移3個單位,向上平移5個單位得到點Q,則Q點的坐標為圖形的平移規律(P52歸納)
重點題目:P53練習;P543、4題;P557題。2.對稱規律▲
關于x軸對稱,縱坐標取相反數關于y軸對稱,橫坐標取相反數
關于原點對稱,橫、縱坐標同時取相反數
例:P點的坐標為(5,7),則P點
(1.)關于x軸對稱的點為(2.)關于y軸的對稱點為(3.)關于原點的對稱點為3.位置規律★
假設在平面直角坐標系上有一點P(a,b)y1.如果P點在第一象限,有a>0,b>0(橫、縱坐標都大于0)第二象限第一象限2.如果P點在第二象限,有a0(橫坐標小于0,縱坐標大于0)X3.如果P點在第三象限,有a5.小長方形的面積表示頻數。縱軸為頻數。等距分組時,通常直接用小長方形的高表示頻數,即縱
組距軸為“頻數”
6.頻數分布折線圖√根據頻數分布圖畫出頻數分布折線圖:①取每個小長方形的上邊的中點,以及x
軸上與最左、最右直方相距半個組距的點。②連線【重點題目】P1693、4題
二元一次方程組和不等式、不等式組
1.解二元一次方程組,基本的思想是;2.二元一次方程(組):含兩個未知數,并且含有未知數的項的次數都是1,像這樣的方程叫做二元一次方程。把具有相同未知數的兩個二元一次方程組合起來,就組成了二元一次方程組。(具體題目見本單元測試卷填空部分)
3.★解二元一次方程組。常用的方法有和。P96、P100歸納4.★列二元一次方程組解實際問題。關鍵:找等量關系常見的類型有:分配問題P1185題;P1084、5題;P102練習3;P1048題;P1034題;追及問題P1037題、P1186題;順流逆流P102練習2;P1082題;藥物配制P1087題;行程問題P99練習4;P1083,6題順流逆流公式:v順v靜v水v逆vv靜水5.不等式的性質(重點是性質三)P1285、7題6.利用不等式的性質解不等式,并把解集在數軸上表示出來(課本上的練例、習題)P1342
步驟:去分母,去括號,移項,合并同類項,系數化為一;其中去分母與系數化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數,要考慮不等號的方向是否發生改變的問題。7.用不等式表示,P1282題,P127練習2;P123練習28.利用數軸或口訣解不等式組(課本上的例、習題)
數軸:P140歸納口訣(簡單不等式):同大取大,同小取小,大(于)小小(于)大取中間,大(于)大小(于)小,解不見了。
9.列不等式(組)解決實際問題:P12910;P1289題;P133例2;P1355、6、7、8、9,P139例2;P140練習2,P1413、4題不等式組的解集的確定方法(a>b):自己將表格補充完整:不等式組
4
在數軸上表示的解集解集x>a口訣大大取大;x>ax>bx<ax<bx<ax>b小大大小中間找;ba小小取小;x>ax<b空集大大小小不見了。
人教版初一數學下冊知識點歸納總結6
第一章有理數
1、大于0的數是正數。
2、有理數分類:正有理數、0、負有理數。
3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)
4、規定了原點,單位長度,正方向的直線稱為數軸。
5、數的大小比較:
①正數大于0,0大于負數,正數大于負數。
②兩個負數比較,絕對值大的反而小。
6、只有符號不同的兩個數稱互為相反數。
7、若a+b=0,則a,b互為相反數
8、表示數a的點到原點的距離稱為數a的絕對值
9、絕對值的三句:正數的絕對值是它本身,
負數的絕對值是它的相反數,0的絕對值是0。
10、有理數的計算:先算符號、再算數值。
11、加減:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數的乘積。
14、負數的奇次冪是負數,負數的偶次冪是正數。
15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。
16、科學計數法:用ax10n表示一個數。(其中a是整數數位只有一位的數)
17、左邊第一個非零的數字起,所有的數字都是有效數字。
【知識梳理】
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位于原點的兩側,并且到原點的距離相等。
3.倒數:若兩個數的積等于1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;
幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法:,其中。
6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用于實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
一元一次方程知識點
知識點1:等式的概念:用等號表示相等關系的式子叫做等式.
知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.
說明:代數式不含等號,方程是用等號把代數式連接而成的式子,且其中一定要含有未知數.
知識點3:一元一次方程的概念:只含有一個未知數,并且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形后,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.
例2:如果(a+1)+45=0是一元一次方程,則a________,b________.
分析:一元一次方程需要滿足的條件:未知數系數不等于0,次數為1.∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.
(2)等式兩邊乘以(或除以)同一個不為0的數或代數式,所得的結果仍是等式.
即若a=b,則am=bm.或.此外等式還有其它性質:若a=b,則b=a.若a=b,b=c,則a=c.
說明:等式的性質是解方程的重要依據.
例3:下列變形正確的是()
A.如果ax=bx,那么a=bB.如果(a+1)x=a+1,那么x=1
C.如果x=y,則x-5=5-yD.如果則
分析:利用等式的性質解題.應選D.
說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.
知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.
知識點6:關于移項:⑴移項實質是等式的基本性質1的運用.
⑵移項時,一定記住要改變所移項的符號.
知識點7:解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、將未知數的系數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.
例4:解方程.
分析:靈活運用一元一次方程的步驟解答本題.
解答:去分母,得9x-6=2x,移項,得9x-2x=6,合并同類項,得7x=6,系數化為1,得x=.
說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.
知識點8:方程的檢驗
檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.
注意:應代入原方程的左、右兩邊分別計算,不能代入變形后的方程的’左邊和右邊.
三、一元一次方程的應用
一元一次方程在實際生活中的應用,是很多同學在學習一元一次方程過程中遇到的一個棘手問題.下面是對一元一次方程在實際生活中的應用的一個專題介紹,希望能為同學們的學習提供幫助.
一、行程問題
行程問題的基本關系:路程=速度×時間,
速度=,時間=.
1.相遇問題:速度和×相遇時間=路程和
例1甲、乙二人分別從A、B兩地相向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問甲、乙二人經過多長時間能相遇?
解:設甲、乙二人t分鐘后能相遇,則
(200+300)×t=1000,
t=2.
答:甲、乙二人2鐘后能相遇.
2.追趕問題:速度差×追趕時間=追趕距離
例2甲、乙二人分別從A、B兩地同向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問幾分鐘后乙能追上甲?解:設t分鐘后,乙能追上甲,則
(300-200)t=1000,
t=10.
答:10分鐘后乙能追上甲.
3.航行問題:順水速度=靜水速度+水流速度,逆水速度=靜水速度-水流速度.例3甲乘小船從A地順流到B地用了3小時,已知A、B兩地相距90千米.水流速度是20千米/小時,求小船在靜水中的速度.
解:設小船在靜水中的速度為v,則有
(v+20)×3=90,
v=10(千米/小時).
答:小船在靜水中的速度是10千米/小時.
二、工程問題
工程問題的基本關系:①工作量=工作效率×工作時間,工作效率=,工作時間=;②常把工作量看作單位1.
例4已知甲、乙二人合作一項工程,甲25天獨立完成,乙20天獨立完成,甲、乙二人合作5天后,甲另有事,乙再單獨做幾天才能完成?
解:設甲再單獨做x天才能完成,有
(+)×5+=1,
x=11.
答:乙再單獨做11天才能完成.
三、環行問題
環行問題的基本關系:同時同地同向而行,第一次相遇:快者路程-慢者路程=環行周長.同時同地背向而行,第一次相遇:甲路程+乙路程=環形周長.
例5王叢和張蘭繞環行跑道行走,跑道長400米,王叢的速度是200米/分鐘,張蘭的速度是300米/分鐘,二人如從同地同時同向而行,經過幾分鐘二人相遇?
解:設經過t分鐘二人相遇,則
(300-200)t=400,
t=4.
答:經過4分鐘二人相遇.
四、數字問題
數字問題的基本關系:數字和數是不同的,同一個數字在不同數位上,表示的數值不同.
例6一個兩位數,個位數字比十位數字小1,這個兩位數的個位十位互換后,它們的和是33,求這個兩位數.
解:設原兩位數的個位數字是x,則十位數字為x+1,根據題意,得
[10(x-1)+x]+[10x+(x+1)]=33,
x=1,則x+1=2.
∴這個數是21.
答:這個兩位數是21.
五、利潤問題
利潤問題的基本關系:①獲利=售價-進價②打幾折就是原價的十分之幾例7某商場按定價銷售某種電器時,每臺獲利48元,按定價的9折銷售該電器6臺與將定價降低30元銷售該電器9臺所獲得的利潤相等,該電器每臺進價、定價各是多少元?
解:設該電器每臺的進價為x元,則定價為(48+x)元,根據題意,得6[0.9(48+x)-x]=9[(48+x)-30-x],
x=162.
48+x=48+162=210.
答:該電器每臺進價、定價各分別是162元、210元.
六、濃度問題
濃度問題的基本關系:溶液濃度=,溶液質量=溶質質量+溶劑質量,溶質質量=溶液質量×溶液濃度
例8用“84”消毒液配制藥液對白色衣物進行消毒,要求按1∶200的比例進行稀釋.現要配制此種藥液4020克,則需要“84”消毒液多少克?
解:設需要“84”消毒液x克,根據題意得
=,
x=20.
答:需要“84”消毒液20克.
七、等積變形問題
例1用直徑為90mm的圓柱形玻璃杯(已裝滿水,且水足夠多)向一個內底面積為131×131mm2,內高為81mm的長方體鐵盒倒水,當鐵盒裝滿水時,玻璃杯中水的高度下降了多少?(結果保留π)
第9/11頁
分析:玻璃杯里倒掉的水的體積和長方體鐵盒里所裝的水的體積相等,所以等量關系為:
玻璃杯里倒掉的水的體積=長方體鐵盒的容積.
解:設玻璃杯中水的高度下降了xmm,根據題意,得經檢驗,它符合題意.
八、利息問題
例2儲戶到銀行存款,一段時間后,銀行要向儲戶支付存款利息,同時銀行還將代扣由儲戶向國家繳納的利息稅,稅率為利息的20%.
(1)將8500元錢以一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時可得到利息________元.扣除利息稅后實得________元.
(2)小明的父親將一筆資金按一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時,扣除所得稅后得本金和利息共計71232元,問這筆資金是多少元?
(3)王紅的爸爸把一筆錢按三年期的定期儲蓄存入銀行,假設年利率為3%,到期支取時扣除所得稅后實得利息為432元,問王紅的爸爸存入銀行的本金是多少?
分析:利息=本金×利率×期數,存幾年,期數就是幾,另外,還要注意,實得利息=利息-利息稅.
解:(1)利息=本金×利率×期數=8500×2.2%×1=187元.
實得利息=利息×(1-20%)=187×0.8=149.6元.
(2)設這筆資金為x元,依題意,有x(1+2.2%×0.8)=71232.
解方程,得x=70000.
經檢驗,符合題意.
答:這筆資金為70000元.
(3)設這筆資金為x元,依題意,得x×3×3%×(1-20%)=432.
解方程,得x=6000.
經檢驗,符合題意.
答:這筆資金為6000元.
人教版初一數學下冊知識點歸納總結7
初一下冊知識點總結
1.同底數冪的乘法:am?an=am+n,底數不變,指數相加。
2.同底數冪的除法:am÷an=am-n,底數不變,指數相減。
3.冪的乘方與積的乘方:(am)n=amn,底數不變,指數相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。
4.零指數與負指數公式:
(1)a0=1(a≠0);a-n=,(a≠0)。注意:00,0-2無意義。
(2)有了負指數,可用科學記數法記錄小于1的數,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數的和與這兩個數的差的積等于這兩個數的平方差;
(2)完全平方公式:
①(a+b)2=a2+2ab+b2,兩個數和的平方,等于它們的平方和,加上它們的積的2倍;
②(a-b)2=a2-2ab+b2,兩個數差的平方,等于它們的平方和,減去它們的積的2倍;
※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項式x2+px+q是完全平方式,則有關系式:;
※(2)二次三項式ax2+bx+c經過配方,總可以變為a(x-h)2+k的形式。
注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意:。
7.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的.數字系數,簡稱單項式的系數;
系數不為零時,單項式中所有字母指數的和,叫單項式的次數。
8.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;
多項式里,次數最高項的次數叫多項式的次數;
注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式。
9.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項。
10.合并同類項法則:系數相加,字母與字母的指數不變。
11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。
注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列。
平面幾何部分
1、補角重要性質:同角或等角的補角相等.
余角重要性質:同角或等角的余角相等.
2、①直線公理:過兩點有且只有一條直線.
線段公理:兩點之間線段最短.
②有關垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.
3、三角形的內角和等于180
三角形的一個外角等于與它不相鄰的兩個內角的和
三角形的一個外角大于與它不相鄰的任何一個內角
4、n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內角和公式:180(n-2);多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
①a+b>c(ab為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b 8、對應周長取值范圍: 若兩邊分別為a,b則周長的取值范圍是2a 如兩邊分別為5和7則周長的取值范圍是14 9、相關命題: (1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。 (2)銳角三角形中最大的銳角的取值范圍是60≤Xba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數xy0ba>, 9.幾個重要的判斷:, xy0x、y是負數xy0xy0x、y異號且正數絕對值大,xy0-2- xy0x、y異號且負數絕對值大xy0.博源教育曾老師1378780036613 整式的乘除 1.同底數冪的乘法:aman=am+n,底數不變,指數相加. 2.冪的乘方與積的乘方:(am)n=amn,底數不變,指數相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項式的乘法:系數相乘,相同字母相乘,只在一個因式中含有的字母,連同指數寫在積里.4.單項式與多項式的乘法:m(a+b+c)=ma+mb+mc,用單項式去乘多項式的每一項,再把所得的積相加.5.多項式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.6.乘法公式: (1)平方差公式:(a+b)(a-b)=a2-b2,兩個數的和與這兩個數的差的積等于這兩個數的平方差;(2)完全平方公式: ①(a+b)=a+2ab+b,兩個數和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數差的平方,等于它們的平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方: p(1)若二次三項式x+px+q是完全平方式,則有關系式:22 222 2q; (2)二次三項式ax2+bx+c經過配方,總可以變為a(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號;②當x=h時,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22 2 1x21xx22. 8.同底數冪的除法:am÷an=am-n,底數不變,指數相減.9.零指數與負指數公式: (1)a0=1(a≠0);a-n=1an,(a≠0).注意:00,0-2無意義; (2)有了負指數,可用科學記數法記錄小于1的數,例如:0.0000201=2.01×10-5. 10.單項式除以單項式:系數相除,相同字母相除,只在被除式中含有的字母,連同它的指數作為商的一個因式. 11.多項式除以單項式:先用多項式的每一項除以單項式,再把所得的商相加. 12.多項式除以多項式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運算:先乘方,后乘除,最后加減,有括號先算括號內.線段、角、相交線與平行線 幾何A級概念:(要求深刻理解、熟練運用、主要用于幾何證明) 1.角平分線的定義:一條射線把一個角分成兩個相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點的定義:幾何表達式舉例:(1)∵C是AB中點∴AC=BCCB點C把線段AB分成兩條相等的線段,點C叫線段中點.(如圖)A(2)∵AC=BC∴C是AB中點3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC 博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達式舉例:∵a=cb=c∴a=b5.補角重要性質:同角或等角的補角相等.(如圖)13幾何表達式舉例:∵a=cb=d又∵c=d∴a=b幾何表達式舉例:∵a=c+db=c+d∴a=b幾何表達式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質:同角或等角的余角相等.(如圖)幾何表達式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對頂角性質定理:對頂角相等.(如圖)CAOBD幾何表達式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個角,有一個角是直角,這兩條直線互相垂直.(如圖)AC幾何表達式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內錯角相等,兩條直線平行;(如圖) 幾何表達式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內角互補,兩條直線平行.(如圖)11.平行線性質定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內錯角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內角互補.(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180° 幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題) 一基本概念: 直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補角、互為余角、鄰補角、兩點間的距離、相交線、平行線、垂線段、垂足、對頂角、延長線與反向延長線、同位角、內錯角、同旁內角、點到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理: 1.直線公理:過兩點有且只有一條直線.2.線段公理:兩點之間線段最短. 3.有關垂線的定理: (1)過一點有且只有一條直線與已知直線垂直; (2)直線外一點與直線上各點連結的所有線段中,垂線段最短.4.平行公理:經過直線外一點,有且只有一條直線與這條直線平行 三公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識: 1.定義有雙向性,定理沒有. 2.直線不能延長;射線不能正向延長,但能反向延長;線段能雙向延長. 3.命題可以寫為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結論. 4.幾何畫圖要畫一般圖形,以免給題目附加沒有的條件,造成誤解.5.數射線、線段、角的個數時,應該按順序數,或分類數. 6.幾何論證題可以運用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角: 一、目標與要求 1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步; 2.初步學會如何尋找問題中的相等關系,列出方程,了解方程的概念; 3.培養學生獲取信息,分析問題,處理問題的能力。 二、重點 從實際問題中尋找相等關系; 建立列方程解決實際問題的思想方法,學會合并同類項,會解ax+bx=c類型的一元一次方程。 三、難點 從實際問題中尋找相等關系; 分析實際問題中的已經量和未知量,找出相等關系,列出方程,使學生逐步建立列方程解決實際問題的思想方法。 四、知識點、概念總結 1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。 2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a0)。 3.條件:一元一次方程必須同時滿足4個條件: (1)它是等式; (2)分母中不含有未知數; (3)未知數最高次項為1; (4)含未知數的項的系數不為0. 4.等式的性質: 等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。 等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。 等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。 解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。 5.合并同類項 (1)依據:乘法分配律 (2)把未知數相同且其次數也相同的相合并成一項;常數計算后合并成一項 (3)合并時次數不變,只是系數相加減。 6.移項 (1)含有未知數的項變號后都移到方程左邊,把不含未知數的項移到右邊。 (2)依據:等式的性質 (3)把方程一邊某項移到另一邊時,一定要變號。 7.一元一次方程解法的一般步驟: 使方程左右兩邊相等的未知數的值叫做方程的解。 一般解法: (1)去分母:在方程兩邊都乘以各分母的最小公倍數; (2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號) (3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號 (4)合并同類項:把方程化成ax=b(a0)的形式; (5)系數化成1:在方程兩邊都除以未知數的系數a,得到方程的解x=b/a. 8.同解方程 如果兩個方程的解相同,那么這兩個方程叫做同解方程。 9.方程的同解原理: (1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。 (2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。 由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發! 感謝您花時間閱讀本文。如果您覺得人教版初一數學下冊知識點歸納總結這篇文章對您有所幫助,我們非常希望您能夠將其分享給更多的人。最后我們將繼續努力,為您提供更多有價值的內容。祝您生活愉快! 本站資源均為網友上傳分享,本站僅負責分類整理,如有任何問題可聯系我們(點這里聯系)反饋。人教版初一數學下冊知識點歸納總結8