
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時(shí),所成的角為直角,
b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
集合
()元素與集合的關(guān)系:屬于()和不屬于()1
2)集合中元素的特性:確定性、互異性、無序性集合與元素((3)集合的分類:按集合中元素的個(gè)數(shù)多少分為:有限集、無限集、空集
4)集合的表示方法:列舉法、描述法(自然語言描述、特征性質(zhì)描述)、圖示法、區(qū)間法(
子集:若xAxB,則AB,即A是B的子集。
1、若集合A中有n個(gè)元素,則集合A的子集有2n個(gè),真子集有(2n-1)個(gè)。
2、任何一個(gè)集合是它本身的子集,即AA注
關(guān)系3、對(duì)于集合A,B,C,如果AB,且BC,那么AC.4、空集是任何集合的(真)子集。
真子集:若AB且AB(即至少存在x0B但x0A),則A是B的真子集。集合集合相等:AB且ABAB
集合與集合定義:ABx/xA且xB交集性質(zhì):AAA,A,ABBA,ABA,ABB,ABABA定義:ABx/xA或xB并集性質(zhì):AAA,AA,ABBA,ABA,ABB,ABABB運(yùn)算
Card(AB)Card(A)Card(B)-Card(AB)定義:CUAx/xU且xA補(bǔ)集性質(zhì):(CUA)A,(CUA)AU,CU(CUA)A,CU(AB)(CUA)(CUB),C(AB)(CA)(CB)UUU
函數(shù)
映射定義:設(shè)A,B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:B為從集合A到集合B的一個(gè)映射
傳統(tǒng)定義:如果在某變化中有兩個(gè)變量x,y,并且對(duì)于x在某個(gè)范圍內(nèi)的每一個(gè)確定的值,
定義按照某個(gè)對(duì)應(yīng)關(guān)系f,y都有唯一確定的值和它對(duì)應(yīng)。那么y就是x的函數(shù)。記作yf(x).
近代定義:函數(shù)是從一個(gè)數(shù)集到另一個(gè)數(shù)集的映射。定義域函數(shù)及其表示函數(shù)的三要素值域?qū)?yīng)法則
解析法函數(shù)的表示方法列表法
圖象法
傳統(tǒng)定義:在區(qū)間a,b上,若ax1x2b,如f(x1)f(x2),則f(x)在a,b上遞增,a,b是
遞增區(qū)間;如f(x1)f(x2),則f(x)在a,b上遞減,a,b是的遞減區(qū)間。單調(diào)性導(dǎo)數(shù)定義:在區(qū)間a,b上,若f(x)0,則f(x)在a,b上遞增,a,b是遞增區(qū)間;如f(x)0
a,b是的遞減區(qū)間。則f(x)在a,b上遞減,
最大值:設(shè)函數(shù)yf(x)的定義域?yàn)镮,如果存在實(shí)數(shù)M滿足:(1)對(duì)于任意的xI,都有f(x)M;函數(shù)(2)存在x0I,使得f(x0)M。則稱M是函數(shù)yf(x)的最大值函數(shù)的基本性質(zhì)最值最小值:設(shè)函數(shù)yf(x)的定義域?yàn)镮,如果存在實(shí)數(shù)N滿足:(1)對(duì)于任意的xI,都有f(x)N;(2)存在x0I,使得f(x0)N。則稱N是函數(shù)yf(x)的最小值
(1)f(x)f(x),x定義域D,則f(x)叫做奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱。
奇偶性(2)f(x)f(x),x定義域D,則f(x)叫做偶函數(shù),其圖象關(guān)于y軸對(duì)稱。奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱
周期性:在函數(shù)f(x)的定義域上恒有f(xT)f(x)(T0的常數(shù))則f(x)叫做周期函數(shù),T為周期;
T的最小正值叫做f(x)的最小正周期,簡(jiǎn)稱周期
(1)描點(diǎn)連線法:列表、描點(diǎn)、連線向左平移個(gè)單位:y1y,x1axyf(xa)
向右平移a個(gè)單位:yy,xaxyf(xa)
平移變換向上平移b個(gè)單位:x1x,y1byybf(x)
11向下平移b個(gè)單位:xx,y11byybf(x)
橫坐標(biāo)變換:把各點(diǎn)的橫坐標(biāo)x1縮短(當(dāng)w1時(shí))或伸長(zhǎng)(當(dāng)0w1時(shí))
到原來的1/w倍(縱坐標(biāo)不變),即x1wxyf(wx)
伸縮變換縱坐標(biāo)變換:把各點(diǎn)的縱坐標(biāo)y伸長(zhǎng)(A1)或縮短(0A1)到原來的A倍1函數(shù)圖象的畫法(橫坐
標(biāo)不變),即y1y/Ayf(x)(xx12x0x2x0x2)變換法12y0yf(2x0x)關(guān)于點(diǎn)(x0,y0)對(duì)稱:yy12y0y12y0y
xx12x0x12x0x關(guān)于直線xx0對(duì)稱:yf(2x0x)yy1y1y對(duì)稱變換xx1xx關(guān)于直線yy0對(duì)稱:12y0yf(x)yy2y10y12y0yxx1關(guān)于直線yx對(duì)稱:yf1(x)yy1
附:
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對(duì)數(shù)的真數(shù)大于零;4、指數(shù)
函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)ytanx中xk
2
(kZ);余
切函數(shù)ycotx中;6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法三、函數(shù)的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法四、函數(shù)的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)2、若f(x)為增(減)函數(shù),則f(x)為減(增)函數(shù)
3、若f(x)與g(x)的單調(diào)性相同,則yf[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則
yf[g(x)]是減函數(shù)。
4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的`單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個(gè)奇函數(shù)在x0處有定義,則f(0)0,如果一個(gè)函數(shù)yf(x)既是奇函數(shù)又是偶函數(shù),則f(x)0(反之不成立)
2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。
4、兩個(gè)函數(shù)yf(u)和ug(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。5、若函數(shù)
f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為
11
f(x)[f(x)f(x)][f(x)f(x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)
22
的和。
零點(diǎn):對(duì)于函數(shù)yf(x),我們把使f(x)0的實(shí)數(shù)x叫做函數(shù)yf(x)的零點(diǎn)。定理:如果函數(shù)yf(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0,
零點(diǎn)與根的關(guān)系那么,函數(shù)yf(x)在區(qū)間[a,b]內(nèi)有零點(diǎn)。即存在c(a,b),使得f(c)0,這個(gè)c也是方
程f(x)0的根。(反之不成立)關(guān)系:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)有零點(diǎn)函數(shù)yf(x)的圖象與x軸有交點(diǎn)(1)確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精確度;函數(shù)與方程(2)求區(qū)間(a,b)的中點(diǎn)c;函數(shù)的應(yīng)用(3)計(jì)算f(c);
二分法求方程的近似解①若f(c)0,則c就是函數(shù)的零點(diǎn);
②若f(a)f(c)0,則令b(此時(shí)零點(diǎn)cx(a,b));0③若f(c)f(b)0,則令a(此時(shí)零點(diǎn)cx(c,b));0
(4)判斷是否達(dá)到精確度:即若a-b,則得到零點(diǎn)的近似值a(或b);否則重復(fù)24。幾類不同的增長(zhǎng)函數(shù)模型函數(shù)模型及其應(yīng)用用已知函數(shù)模型解決問題
建立實(shí)際問題的函數(shù)模型
n為根指數(shù),a為被開方數(shù)a分?jǐn)?shù)指數(shù)冪
arasars(a0,r,sQ)指數(shù)的運(yùn)算
rs指數(shù)函數(shù)rs性質(zhì)(a)a(a0,r,sQ)
(ab)rarbs(a0,b0,rQ)
定義:一般地把函數(shù)yax(a0且a1)叫做指數(shù)函數(shù)。指數(shù)函數(shù)性質(zhì):見表1
對(duì)數(shù):xlogaN,a為底數(shù),N為真數(shù)
loga(MN)logaMlogaN;基本初等函數(shù)
logaMlogaMlogaN;.N對(duì)數(shù)的運(yùn)算性質(zhì)
nnlogaM;(a0,a1,M0,N0)logaM對(duì)數(shù)函數(shù)
logcb
logab(a,c0且a,c1,b0)換底公式:logca
對(duì)數(shù)函數(shù)定義:一般地把函數(shù)ylogax(a0且a1)叫做對(duì)數(shù)函數(shù)性質(zhì):見表1
定義:一般地,函數(shù)yx叫做冪函數(shù),x是自變量,是常數(shù)。冪函數(shù)性質(zhì):見表2
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
一、直線與方程高考考試內(nèi)容及考試要求:
考試內(nèi)容:
1.直線的傾斜角和斜率;直線方程的點(diǎn)斜式和兩點(diǎn)式;直線方程的一般式;
2.兩條直線平行與垂直的條件;兩條直線的交角;點(diǎn)到直線的距離;
考試要求:
1.理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程;
2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;
二、直線與方程
課標(biāo)要求:
1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;
2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點(diǎn)的直線斜率的計(jì)算公式;
3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點(diǎn)斜式、兩點(diǎn)式及一般式),體會(huì)斜截式與一次函數(shù)的關(guān)系;
4.會(huì)用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點(diǎn),判斷兩條直線的位置關(guān)系,求兩點(diǎn)間的距離、點(diǎn)到直線的距離以及兩條平行線之間的距離等。
要點(diǎn)精講:
1.直線的傾斜角:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.
傾斜角α的取值范圍:0°≤α<180°.當(dāng)直線l與x軸垂直時(shí),α=90°.
2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα
(1)當(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;
(2)當(dāng)直線l與x軸垂直時(shí),α=90°,k不存在。
由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。
3.過兩點(diǎn)p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:
(若x1=x2,則直線p1p2的斜率不存在,此時(shí)直線的傾斜角為90°)。
4.兩條直線的平行與垂直的判定
(1)若l1,l2均存在斜率且不重合:
①;②
注:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立。
(2)
若A1、A2、B1、B2都不為零。
注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。
兩條直線的交點(diǎn):兩條直線的交點(diǎn)的個(gè)數(shù)取決于這兩條直線的方程組成的方程組的解的個(gè)數(shù)。
5.直線方程的五種形式
確定直線方程需要有兩個(gè)互相獨(dú)立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。
直線的點(diǎn)斜式與斜截式不能表示斜率不存在(垂直于x軸)的直線;兩點(diǎn)式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點(diǎn)的直線。
6.直線的交點(diǎn)坐標(biāo)與距離公式
(1)兩直線的交點(diǎn)坐標(biāo)
一般地,將兩條直線的方程聯(lián)立,得方程組
若方程組有唯一解,則兩條直線相交,解即為交點(diǎn)的坐標(biāo);若方程組無解,則兩條直線無公共點(diǎn),此時(shí)兩條直線平行。
(2)兩點(diǎn)間距離
兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離公式
特別地:軸,則、軸,則
(3)點(diǎn)到直線的距離公式
點(diǎn)到直線的距離為:
(4)兩平行線間的距離公式:
若,則:
注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
35.弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
高中數(shù)學(xué)基本知識(shí)點(diǎn)總結(jié)篇8
高一數(shù)學(xué)學(xué)習(xí)階段,做好每一個(gè)知識(shí)點(diǎn)的總結(jié)有助于我們?cè)诳荚囍械陌l(fā)揮。
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在.
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到.
(3)直線方程
①點(diǎn)斜式:直線斜率k,且過點(diǎn)
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1.
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式:直線兩點(diǎn),
④截矩式:
其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(二)垂直直線系
垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))
(三)過定點(diǎn)的直線系
(ⅰ)斜率為k的直線系:,直線過定點(diǎn);
(ⅱ)過兩條直線,的交點(diǎn)的直線系方程為
(為參數(shù)),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否.
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組的一組解.
方程組無解;方程組有無數(shù)解與重合
(8)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
(9)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解.
二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑.
2、圓的方程
(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
(2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求.確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的`位置.
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓.
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺(tái):
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形.
(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形.
(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度.
3、空間幾何體的直觀圖——斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
②原來與y軸平行的線段仍然與y平行,長(zhǎng)度為原來的一半.
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)
(3)柱體、錐體、臺(tái)體的體積公式
(4)球體的表面積和體積公式:V=;S=
4、空間點(diǎn)、直線、平面的位置關(guān)系
公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi).
應(yīng)用:判斷直線是否在平面內(nèi)
用符號(hào)語言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a.
符號(hào)語言:
公理2的作用:
①它是判定兩個(gè)平面相交的方法.
②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn).
③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù).
公理3:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面.
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
公理4:平行于同一條直線的兩條直線互相平行
空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
②異面直線性質(zhì):既不平行,又不相交.
③異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
④異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ).
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa‖α
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β
相交——有一條公共直線.α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.
③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為.
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.
③兩條異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角.
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”.
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
一、求導(dǎo)數(shù)的方法
(1)基本求導(dǎo)公式
(2)導(dǎo)數(shù)的四則運(yùn)算
(3)復(fù)合函數(shù)的導(dǎo)數(shù)
設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即
二、關(guān)于極限
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時(shí),數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當(dāng)自變量x無限趨近于常數(shù)時(shí),如果函數(shù)無限趨近于一個(gè)常數(shù),就說當(dāng)x趨近于時(shí),函數(shù)的極限是,記作
三、導(dǎo)數(shù)的概念
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是
注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。
例、若=2,則=()A—1B—2C1D
四、導(dǎo)數(shù)的綜合運(yùn)用
(一)曲線的切線
函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=
(2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)—f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x—x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)—f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1、利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號(hào)(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2、用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
一、圓及圓的相關(guān)量的定義
1、平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
2、圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
3、頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4、過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5、直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6、兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓–⊙;半徑—r;弧–⌒;直徑—d
扇形弧長(zhǎng)/圓錐母線—l;周長(zhǎng)—C;面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1、點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2、圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
3、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4、在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別等等。
5、一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6、直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7、不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8、一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9、直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r。
10、圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11、圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1、圓的周長(zhǎng)C=2πr=πd
2、圓的面積S=s=πr2
3、扇形弧長(zhǎng)l=nπr/180
4、扇形面積S=nπr2/360=rl/2
5、圓錐側(cè)面積S=πrl
四、圓的方程
1、圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是:
(x-a)^2+(y-b)^2=r^2
2、圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是:
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0。在圓上任意一點(diǎn)的曲率半徑都是r。
五、圓與直線的位置關(guān)系判斷
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0。
利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切
圓的定理:
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論
1、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
2、圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內(nèi)切d=R-r(R>r)
⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2,p表示正n邊形的周長(zhǎng)
27、正三角形面積√3a/4,a表示邊長(zhǎng)
28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,這些角的和應(yīng)為360°
29、弧長(zhǎng)計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長(zhǎng)公式l=a*r,a是圓心角的弧度數(shù)r>0,扇形面積公式s=1/2*l*r
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為?k?。
如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1.過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
直線的傾斜角:
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個(gè)元素的集合。
2)無限集含有無限個(gè)元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關(guān)系
1、“包含”關(guān)系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2—1=0}B={—11}“元素相同”
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。
①任何一個(gè)集合是它本身的子集。AA
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果ABBC那么AC
④如果AB同時(shí)BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運(yùn)算
1、交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補(bǔ)集
(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。
(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
簡(jiǎn)單隨機(jī)抽樣
(1)總體和樣本
①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。
②把每個(gè)研究對(duì)象叫做個(gè)體。
③把總體中個(gè)體的總數(shù)叫做總體容量。
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,…,xx的研究,我們稱它為樣本。其中個(gè)體的個(gè)數(shù)稱為樣本容量。
(2)簡(jiǎn)單隨機(jī)抽樣
簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。
特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
(3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
①抽簽法;
②隨機(jī)數(shù)表法;
③計(jì)算機(jī)模擬法;
③使用統(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、集合、簡(jiǎn)易邏輯
1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
二、函數(shù)
1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
三、數(shù)列(12課時(shí),5個(gè))
1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。
四、三角函數(shù)
1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量
1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式
1.不等式;2.不等式的'基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式。
七、直線和圓的方程
1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。
八、圓錐曲線
1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì)。
九、直線、平面、簡(jiǎn)單何體
1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項(xiàng)式定理
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì)。
十一、概率
1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。
必修一函數(shù)重點(diǎn)知識(shí)整理
1.函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對(duì)稱性)
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;
4.函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:(1)定義域上的單調(diào)函數(shù)必有反函數(shù);(2)奇函數(shù)的反函數(shù)也是奇函數(shù);(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);(4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f–1(x)]=x(x∈B),f–1[f(x)]=x(x∈A).
11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;
12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題
13.恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
一、一次函數(shù)定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k0時(shí),直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k0時(shí),直線只通過一、三象限;當(dāng)k0時(shí),直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b①和y2=kx2+b②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3(為什么?)
高中數(shù)學(xué)基本知識(shí)點(diǎn)總結(jié)篇10
軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2、寫出點(diǎn)M的集合;
3、列出方程=0;
4、化簡(jiǎn)方程為最簡(jiǎn)形式;
5、檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:
求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
函數(shù)的概念
函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A—B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.
(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則
函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.
(2)畫法
A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對(duì)稱變換,即平移。
(3)函數(shù)圖像平移變換的特點(diǎn):
1)加左減右——————只對(duì)x
2)上減下加——————只對(duì)y
3)函數(shù)y=f(x)關(guān)于X軸對(duì)稱得函數(shù)y=-f(x)
4)函數(shù)y=f(x)關(guān)于Y軸對(duì)稱得函數(shù)y=f(-x)
5)函數(shù)y=f(x)關(guān)于原點(diǎn)對(duì)稱得函數(shù)y=-f(-x)
6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得
函數(shù)y=|f(x)|
7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對(duì)稱的圖像得函數(shù)f(|x|)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
高考數(shù)學(xué)重要知識(shí)點(diǎn)整理
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
⒉寫出點(diǎn)M的集合;
⒊列出方程=0;
⒋化簡(jiǎn)方程為最簡(jiǎn)形式;
⒌檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
⒋參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
6.直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
人教版高三年級(jí)高考數(shù)學(xué)必考知識(shí)點(diǎn)
①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的`高相等(它叫做正棱錐的斜高).
②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.
⑶特殊棱錐的頂點(diǎn)在底面的射影位置:
①棱錐的側(cè)棱長(zhǎng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
②棱錐的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
③棱錐的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.
⑤三棱錐有兩組對(duì)棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.
⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.
⑦每個(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;
⑧每個(gè)四面體都有內(nèi)切球,球心
是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.
[注]:
i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)
ii.若一個(gè)三角錐,兩條對(duì)角線互相垂直,則第三對(duì)角線必然垂直.
簡(jiǎn)證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知?jiǎng)t.
iii.空間四邊形OABC且四邊長(zhǎng)相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.
iv.若是四邊長(zhǎng)與對(duì)角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.
簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形
EFGH為長(zhǎng)方形.若對(duì)角線等,則為正方形.
高三數(shù)學(xué)高考復(fù)習(xí)知識(shí)點(diǎn)
數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來,試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。
探索性問題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。
近幾年來,高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;
(1)數(shù)列本身的有關(guān)知識(shí),其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。
(2)數(shù)列與其它知識(shí)的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。
(3)數(shù)列的應(yīng)用問題,其中主要是以增長(zhǎng)率問題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。
1.在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問題;
2.在解決綜合題和探索性問題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問題和解決問題的能力,
進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問題與解決問題的能力。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)16
高中數(shù)學(xué)(文)包含5本必修、2本選修,(理)包含5本必修、3本選修,每學(xué)期學(xué)**兩本書。
必修一:1、集合與函數(shù)的概念(這部分知識(shí)抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對(duì)數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)
必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角
這部分知識(shí)是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識(shí)較強(qiáng)。這部分知識(shí)高考占22—27分
2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修三:1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分
必修四:1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15—20分,并且經(jīng)常和其他函數(shù)混合起來考查
2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17—22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。
文科:選修1—1、1—2
選修1–1:重點(diǎn):高考占30分
1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)
選修1–2:1、統(tǒng)計(jì):2、推理證明:一般不考,若考會(huì)是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)
理科:選修2—1、2—2、2—3
選修2–1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡(jiǎn)便化)
選修2–2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)
選修2–3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識(shí)點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):
高考的知識(shí)板塊
集合與簡(jiǎn)單邏輯:5分或不考
函數(shù):高考60分:①、指數(shù)函數(shù)②對(duì)數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))
平面向量與解三角形
立體幾何:22分左右
不等式:(線性規(guī)則)5分必考
數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題
平面解析幾何:(30分左右)
計(jì)算原理:10分左右
概率統(tǒng)計(jì):12分—-17分
復(fù)數(shù):5分
推理證明
一般高考大題分布
1、17題:三角函數(shù)
2、18、19、20三題:立體幾何、概率、數(shù)列
3、21、22題:函數(shù)、圓錐曲線
成績(jī)不理想一般是以下幾種情況:
做題不細(xì)心,(會(huì)做,做不對(duì))
基礎(chǔ)知識(shí)沒有掌握
解決問題不全面,知識(shí)的運(yùn)用沒有系統(tǒng)化(如:一道題綜合了多個(gè)知識(shí)點(diǎn))
心理素質(zhì)不好
總之學(xué)**數(shù)學(xué)一定要掌握科學(xué)的學(xué)**方法:1、筆記:記老師講的課本上沒有的知識(shí)點(diǎn),尤其是數(shù)列性質(zhì),課本上沒有,但做題經(jīng)常用到2、錯(cuò)題收集、歸納總結(jié)
高一年級(jí)
必修一
第一章集合與函數(shù)概念
第二章基本初等函數(shù)(Ⅰ)
第三章函數(shù)的應(yīng)用
必修二
第一章空間幾何體
第二章點(diǎn)、直線、平面之間的位置關(guān)系
第三章直線與方程
必修三
第一章算法初步
第二章統(tǒng)計(jì)
第三章概率
必修四
第一章三角函數(shù)
第二章平面向量
第三章三角恒等變換
(二)教學(xué)要求
在教學(xué)中,由于集合、函數(shù)等內(nèi)容比較抽象,三角函數(shù)在高考中占據(jù)重要地位,平面向量又是高考中數(shù)學(xué)必考內(nèi)容,教師在備課組協(xié)作的基礎(chǔ)上應(yīng)注意對(duì)各章知識(shí)的重難點(diǎn)的講解和釋疑,減輕學(xué)生自學(xué)的壓力,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。
首先,在高中數(shù)學(xué)中,集合的初步知識(shí)以及與其它內(nèi)容的密切聯(lián)系。它們是學(xué)**、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是高中數(shù)學(xué)學(xué)**的出發(fā)點(diǎn)。在教學(xué)中,應(yīng)注重引導(dǎo)學(xué)生更好的理解數(shù)學(xué)中出現(xiàn)的集合語言,使學(xué)生更好的使用集合語言表述數(shù)學(xué)問題,并且可以使學(xué)生運(yùn)用集合的觀點(diǎn),研究、處理數(shù)學(xué)問題。因此集合的基本概念、函數(shù)等有關(guān)內(nèi)容是教師重點(diǎn)講解的內(nèi)容。
其次,函數(shù)作為中學(xué)數(shù)學(xué)中最重要的基本概念之一,教師應(yīng)注意運(yùn)用有關(guān)的概念和函數(shù)的性質(zhì),培養(yǎng)學(xué)生的思維能力;通過指數(shù)與對(duì)數(shù),指數(shù)函數(shù)與對(duì)數(shù)函數(shù)之間的內(nèi)在聯(lián)系,對(duì)學(xué)生進(jìn)行辯證唯物主義觀點(diǎn)的教育;通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生的實(shí)踐能力和創(chuàng)新意識(shí)。
第三,通過對(duì)三角函數(shù)的學(xué)**,學(xué)生將進(jìn)一步了解符號(hào)與變?cè)⒓吓c對(duì)應(yīng)、數(shù)形結(jié)合等基本的數(shù)學(xué)思想在研究三角函數(shù)時(shí)所起的重要作用,在式子與圖形的變化中,教師應(yīng)引導(dǎo)學(xué)生通過分析、探索、劃歸、類比、平行移動(dòng)、伸長(zhǎng)和縮短等常用的基本方法的學(xué)**,使學(xué)生在學(xué)**數(shù)學(xué)和應(yīng)用數(shù)學(xué)方面達(dá)到一個(gè)新的層次。
第四,學(xué)**平面向量,不但應(yīng)注意平面向量基本知識(shí)的講解,更要充分挖掘平面向量的工具作用,提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力和實(shí)際操作的能力,使學(xué)生學(xué)會(huì)提出問題,明確研究方向,使學(xué)生學(xué)會(huì)交流,體驗(yàn)數(shù)學(xué)活動(dòng)的過程,培養(yǎng)創(chuàng)新精神和應(yīng)用能力。
第五、在學(xué)**空間幾何體、點(diǎn)、直線、平面之間的位置關(guān)系時(shí),重點(diǎn)要幫助學(xué)生逐步形成空間想象能力,嚴(yán)格遵循從整體到局部,從具體到抽象的原則,逐步掌握解決空間幾何體的相關(guān)問題。
第六、要在平面解析幾何初步教學(xué)中,幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會(huì)“數(shù)形結(jié)合”的思想方法。
第七、在學(xué)**算法初步、統(tǒng)計(jì)等內(nèi)容的時(shí)候,要注意順序漸進(jìn),不可追求一步到位,特別要注意其思想的重要性。
高二年級(jí)
必修五
第一章解三角形
第二章數(shù)列
第三章不等式
選修1-1
第一章常用邏輯用語
第二章圓錐曲線與方程
第三章導(dǎo)數(shù)及其應(yīng)用
選修1-2
第一章統(tǒng)計(jì)案例
第二章推理與證明
第三章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
第四章框圖
選修2-1
第一章常用邏輯用語
第二章圓錐曲線與方程
第三章空間向量與立體幾何
選修2-2
第一章導(dǎo)數(shù)及其應(yīng)用
第二章推理與證明
第三章數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
選修2-3
第一章計(jì)數(shù)原理
第二章隨機(jī)變量及其分布
第三章統(tǒng)計(jì)案例
(二)教學(xué)要求
高二上
必修5
學(xué)生將在已有知識(shí)的基礎(chǔ)上,通過對(duì)任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長(zhǎng)與角度之間的數(shù)量關(guān)系,并認(rèn)識(shí)到運(yùn)用它們可以解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問題。
數(shù)列作為一種特殊的函數(shù),是反映自然規(guī)律的基本數(shù)學(xué)模型。在本模塊中,學(xué)生將通過對(duì)日常生活中大量實(shí)際問題的分析,建立等差數(shù)列和等比數(shù)列這兩種數(shù)列模型,探索并掌握它們的一些基本數(shù)量關(guān)系,感受這兩種數(shù)列模型的廣泛應(yīng)用,并利用它們解決一些實(shí)際問題。
不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,是數(shù)學(xué)研究的重要內(nèi)容。建立不等觀念、處理不等關(guān)系與處理等量問題是同樣重要的。在本模塊中,學(xué)生將通過具體情境,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本方法,并能解決一些實(shí)際問題;能用二元一次不等式組表示平面區(qū)域,并嘗試解決一些簡(jiǎn)單的二元線性規(guī)劃問題;認(rèn)識(shí)基本不等式及其簡(jiǎn)單應(yīng)用;體會(huì)不等式、方程及函數(shù)之間的聯(lián)系。
選修1—1(文科)
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流。
在必修課程學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握?qǐng)A錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將通過大量實(shí)例,經(jīng)歷由平均變化率到瞬時(shí)變化率的過程,刻畫現(xiàn)實(shí)問題,理解導(dǎo)數(shù)的含義,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;應(yīng)用導(dǎo)數(shù)探索函數(shù)的單調(diào)、極值等性質(zhì)及其在實(shí)際中的應(yīng)用,感受導(dǎo)數(shù)在解決數(shù)學(xué)問題和實(shí)際問題中的作用,體會(huì)微積分的產(chǎn)生對(duì)人類文化發(fā)展的價(jià)值。
選修2-1(理科)
在本模塊中,學(xué)生將學(xué)**常用邏輯用語、圓錐曲線與方程、空間中的向量(簡(jiǎn)稱空間向量)與立體幾何。
在本模塊中,學(xué)生將在義務(wù)教育階段的基礎(chǔ)上,學(xué)**常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,從而更好地進(jìn)行交流。
在必修階段學(xué)**平面解析幾何初步的基礎(chǔ)上,在本模塊中,學(xué)生將學(xué)**圓錐曲線與方程,了解圓錐曲線與二次方程的關(guān)系,掌握?qǐng)A錐曲線的基本幾何性質(zhì),感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。結(jié)合已學(xué)過的曲線及其方程的實(shí)例,了解曲線與方程的對(duì)應(yīng)關(guān)系,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。
在本模塊中,學(xué)生將在學(xué)**平面向量的基礎(chǔ)上,把平面向量及其運(yùn)算推廣到空間,運(yùn)用空間向量解決有關(guān)直線、平面位置關(guān)系的問題,體會(huì)向量方法在研究幾何圖形中的作用,進(jìn)一步發(fā)展空間想像能力和幾何直觀能力。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)17
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
2.比較兩個(gè)實(shí)數(shù)的大小
兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,
有a-b>0?;a-b=0?;a-b0,則有>1?;=1?;b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
復(fù)習(xí)指導(dǎo)
1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
3.“兩條常用性質(zhì)”
(1)倒數(shù)性質(zhì):①a>b,ab>0?b>0,0;④0
(2)若a>b>0,m>0,則
①真分?jǐn)?shù)的性質(zhì):(b-m>0);
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)18
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個(gè)平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個(gè)平面沒有公共點(diǎn)
判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)19
1、函數(shù)零點(diǎn)的概念:
對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:
函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的`零點(diǎn):
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。
4、二次函數(shù)的零點(diǎn):
二次函數(shù)。
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
3)△q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對(duì)于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作pq
回憶一下初中學(xué)過的“等價(jià)于”這一概念;如果從命題A成立可以推出命題B成立,反過來,從命題B成立也可以推出命題A成立,那么稱A等價(jià)于B,記作AB。“充要條件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說,如果命題A等價(jià)于命題B,那么我們說命題A成立的充要條件是命題B成立;同時(shí)有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的`兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。
“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高考數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)
1、集合的概念
集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一具體對(duì)象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。
4、集合的分類
集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:
有限集:含有有限個(gè)元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。
無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{x?R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請(qǐng)牢記。
(1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。
(2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N。或N+。
(3)全體整數(shù)的集合通常簡(jiǎn)稱為整數(shù)集Z。
(4)全體有理數(shù)的集合通常簡(jiǎn)稱為有理數(shù)集,記做Q。
(5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱為實(shí)數(shù)集,記做R。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
③求不等式解集的過程叫做解不等式。
不等式的判定:
①常見的不等號(hào)有“>”“b”或“a
③不等號(hào)的開口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較小;
④在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)20
三角函數(shù)
注意歸一公式、誘導(dǎo)公式的正確性
數(shù)列題
1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;
2.最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單
立體幾何題
1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問題
1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2.搞清是什么概率模型,套用哪個(gè)公式;
3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4.求概率時(shí),正難則反(根據(jù)p1+p2+…+pn=1);5.注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)21
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).
感謝您花時(shí)間閱讀本文。如果您覺得高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)這篇文章對(duì)您有所幫助,我們非常希望您能夠?qū)⑵浞窒斫o更多的人。最后我們將繼續(xù)努力,為您提供更多有價(jià)值的內(nèi)容。祝您生活愉快!
本站資源均為網(wǎng)友上傳分享,本站僅負(fù)責(zé)分類整理,如有任何問題可聯(lián)系我們(點(diǎn)這里聯(lián)系)反饋。