以下是有關(guān)于高考數(shù)學(xué)公式總結(jié)大全的相關(guān)內(nèi)容,歡迎大家閱讀!
高考數(shù)學(xué)公式總結(jié)大全1
乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b||a|+|b||a-b||a|+|b||a|b=-bab
|a-b||a|-|b|-|a|a|a|
一元二次方程的解-b+(b2-4ac)/2a-b-(b2-4ac)/2a
根與系數(shù)的關(guān)系x1+x2=-b/ax1_2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
b2-4ac0注:方程有兩個(gè)不等的實(shí)根
b2-4ac0注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根
三角函數(shù)公式
兩角和公式
sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)
cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)
tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))
ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))
和差化積
2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/41_+2_+3_+4_+5_+6_++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosb注:角b是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
圓的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0
拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p_2=2pyx2=-2py
直棱柱側(cè)面積s=c_斜棱柱側(cè)面積s=c_
正棱錐側(cè)面積s=1/2c_正棱臺(tái)側(cè)面積s=1/2(c+c)h
圓臺(tái)側(cè)面積s=1/2(c+c)l=pi(r+r)l球的表面積s=4pi_2
圓柱側(cè)面積s=c_=2pi_圓錐側(cè)面積s=1/2__=pi__
弧長(zhǎng)公式l=a_a是圓心角的弧度數(shù)r0扇形面積公式s=1/2__
錐體體積公式v=1/3__圓錐體體積公式v=1/3_i_2h
斜棱柱體積v=sl注:其中,s是直截面面積,l是側(cè)棱長(zhǎng)
柱體體積公式v=s_圓柱體v=pi_2h
高考數(shù)學(xué)公式總結(jié)大全2
圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(zhǎng)=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
橢圓公式
1、橢圓周長(zhǎng)公式:l=2πb+4(a-b)
2、橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸,長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率t,但這兩個(gè)公式都是通過(guò)橢圓周率t推導(dǎo)演變而來(lái)。
高考數(shù)學(xué)公式總結(jié)大全3
拋物線公式
y = ax^2+bx+c 就是y等于ax的平方加上b
a > 0時(shí)開(kāi)口向上
a < 0時(shí)開(kāi)口向下
c = 0時(shí)拋物線經(jīng)過(guò)原點(diǎn)
b = 0時(shí)拋物線對(duì)稱軸為y軸
拋物線標(biāo)準(zhǔn)方程:y^2=2px
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2px y^2=-2px x^2=2py x^2=-2py
面積公式
圓的體積公式 4/3(pi)(r^3)
圓的面積公式 (pi)(r^2)
圓的周長(zhǎng)公式 2(pi)r
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側(cè)面積 S=c_ 斜棱柱側(cè)面積 S=c'_
正棱錐側(cè)面積 S=1/2c_' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h'
圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_2
圓柱側(cè)面積 S=c_=2pi_ 圓錐側(cè)面積 S=1/2__=pi__
弧長(zhǎng)公式 l=a_ a是圓心角的弧度數(shù)r>0 扇形面積公式 s=1/2__
錐體體積公式 V=1/3__ 圓錐體體積公式V=1/3_i_2h
斜棱柱體積 V=S'L 注:其中S'是直截面面積L是側(cè)棱長(zhǎng)
柱體體積公式 V=s_ 圓柱體V=pi_2h
以上是關(guān)于“高考數(shù)學(xué)公式總結(jié)大全”分享,想了解更多“總結(jié)”就上騰游文庫(kù)(m.8226678.com/wenku/)
本站資源均為網(wǎng)友上傳分享,本站僅負(fù)責(zé)分類(lèi)整理,如有任何問(wèn)題可聯(lián)系我們(點(diǎn)這里聯(lián)系)反饋。