av中文字幕电影在线看,国产又色又爽又黄刺激在线视频,毛片在线导航,亚洲激情社区

初三數學知識點歸納思維導圖 初三數學知識點歸納

以下是有關于初三數學知識點歸納的相關內容,歡迎大家閱讀!初三數學知識點歸納

初三數學知識點歸納1

  不等式的概念

  1、不等式:用不等號表示不等關系的式子,叫做不等式。

  2、不等式的解集:對于一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。

  3、對于一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。

  4、求不等式的解集的過程,叫做解不等式。

  5、用數軸表示不等式的方法。

  不等式基本性質

  1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。

  2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。

  3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。

  4、說明:

  ①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。

  ②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的’次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類項5將x項的系數化為1。

  一元一次不等式組

  1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

  2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  3、求不等式組的解集的過程,叫做解不等式組。

  4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。

  5、一元一次不等式組的解法1分別求出不等式組中各個不等式的解集。2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

  6、不等式與不等式組不等式:

  ①用符號〉,=,〈號連接的式子叫不等式。

  ②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

  ③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

  ④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

  7、不等式的解集:

  ①能使不等式成立的未知數的值,叫做不等式的解。

  ②一個含有未知數的不等式的所有解,組成這個不等式的解集。

  ③求不等式解集的過程叫做解不等式。

初三數學知識點歸納2

  初三數學知識點第一章二次根式

  1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;aaa0;

  2a2aa0。

  2二次根式的乘除:ababa0,b0;

  aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。

  4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

  1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。

  2一元二次方程的解法

  配方法:將方程的一邊配成完全平方式,然后兩邊開方;

  bb24ac公式法:x

  2a因式分解法:左邊是兩個因式的乘積,右邊為零。3一元二次方程在實際問題中的應用

  4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉1圖形的旋轉

  旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;

  對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。

  2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖

  形重合,則兩個圖形關于這個點中心對稱;

  中心對稱圖形:一個圖形繞某一點旋轉180度后得到的

  圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

  3關于原點對稱的點的坐標第四章圓

  1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑

  圓是軸對稱圖形,任何一條直徑所在的直線都是它

  的對稱軸;

  垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所

  baca對的弦也相等。

  4圓周角

  在同圓或等圓中,同弧或等弧所對的圓周角相等,都等

  于這條弧所對的圓心角的一半;

  半圓(或直徑)所對的圓周角是直角,90度的圓周角

  所對的弦是直徑。

  5點和圓的位置關系點在

  dr

  點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。

  三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,

  圓心是三角形的三條角平分線的交點,為三角形的內心。

  7圓和圓的位置關系

  外離d>R+r外切d=R+r相交R-r第五章概率初步

  1概率意義:在大量重復試驗中,事件A發生的頻率某個常數p附近,則常數p叫做事件A的概率。

  2用列舉法求概率

  一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=

  mnm穩定在n3用頻率去估計概率

初三數學知識點歸納3

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  12.①直線L和⊙O相交d

  ②直線L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質定理圓的切線垂直于經過切點的半徑

  15.推論1經過圓心且垂直于切線的直線必經過切點

  16.推論2經過切點且垂直于切線的直線必經過圓心

  17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等外角等于內對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離d>R+r

  ②兩圓外切d=R+r

  ③.兩圓相交R-rr

  ④.兩圓內切d=R-rR>r

  ⑤兩圓內含dr

  21.定理相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理把圓分成nn≥3:

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  24.正n邊形的每個內角都等于n-2×180°/n

  25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

  27.正三角形面積√3a/4 a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內公切線長= d-R-r外公切線長= d-R+r

  32.定理一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35.弧長公式l=ar a是圓心角的弧度數r >0扇形面積公式s=1/2lr

  初三數學復習方法

  一、回歸課本,夯實基礎,做好預習。

  數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,提高學習效率。

  二、提高課堂聽課效率,多動腦,勤動手

  初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

  三、建立錯題本,查漏補缺

  初三復習,各類試題要做幾十套,甚至上百套。特級教師提醒學生可以建立一個錯題本,把平時做錯的題系統的整理好,在上面寫上評析和做錯的原因,每過一段時間,就把“錯題筆記”拿出來看一看。在看參考書時,也可以把精彩之處或做錯的題目做上標記,以后再看這本書時就會有所側重。查漏補缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學會“舉一反三,融會貫通”,及時歸納總結。每次訂正試卷或作業時,在錯題旁邊要寫明做錯的原因。

  初三數學學習建議

  培養良好的學習習慣

  1制定計劃。從而使學習目的.明確,時間安排合理,不慌不忙,穩打穩扎,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨練學習意志。

  2課前自學。這是上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習的主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。

  3專心上課。“學然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關鍵環節。課前自學過的學生上課更能專心聽課,他們知道什么地方該詳細聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。

  4及時復習。這是高效率學習的重要一環。通過反復閱讀教材,多方面查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由“懂”到“會”。

  5獨立作業。這是掌握獨立思考,分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的必要過程。這一過程也是對學生意志毅力的考驗,通過作業練習使學生對所學知識由“會”到“熟”。

  6解決疑難。這是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,并經常把容易錯的地方拿來復習強化,作適當的重復性練習,把從老師、同學處獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。

  7系統小結。這是通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系,以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由“活”到“悟”。

  8課外學習。課外學習是課內學習的補充和繼續,包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能夠滿足和發展學生的興趣愛好,培養獨立學習和工作的能力,激發求知欲與學習熱情。

初三數學知識點歸納4

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、弧:圓上兩點之間的曲線部分。半圓周也是弧。

(1)劣弧:小于半圓周的弧。

(2)優弧:大于半圓周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的'一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

初三數學知識點歸納5

  1、圖形的相似

  相似多邊形的對應邊的比值相等,對應角相等;

  兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;

  相似比:相似多邊形對應邊的比值。

  2、相似三角形

  判定:

  平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;

  如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;

  如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;

  如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。

  3相似三角形的周長和面積

  相似三角形(多邊形)的周長的比等于相似比;

  相似三角形(多邊形)的面積的比等于相似比的平方。

  4位似

  位似圖形:兩個多邊形相似,而且對應頂點的連線相交于一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。

初三數學知識點歸納6

一、二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若這個條件不成立,則不是二次根式。

(2)是一個重要的非負數,即;≥0。

2、積的算術平方根:積的算術平方根等于積中各因式的算術平方根的積。

3、二次根式比較大小的方法:

(1)利用近似值比大小。

(2)把二次根式的系數移入二次根號內,然后比大小。

(3)分別平方,然后比大小。

4、商的算術平方根:商的算術平方根等于被除式的算術平方根除以除式的算術平方根。

5、二次根式的除法法則:

(1)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變為整式。

6、最簡二次根式:

(1)滿足下列兩個條件的二次根式,叫做最簡二次根式。

①被開方數的因數是整數,因式是整式。

②被開方數中不含能開的盡的因數或因式。

(2)最簡二次根式中,被開方數不能含有小數、分數,字母因式次數低于2,且不含分母。

(3)化簡二次根式時,往往需要把被開方數先分解因數或分解因式。

(4)二次根式計算的最后結果必須化為最簡二次根式。

7、同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數相同,這幾個二次根式叫做同類二次根式。

8、二次根式的混合運算:

(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數運算,以前學過的,在有理數范圍內的一切公式和運算律在二次根式的混合運算中都適用。

(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合并;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等。

二、一元二次方程

1、一元二次方程的一般形式:a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數習題要先化為一般形式,目的是確定一般形式中的a、
b、 c;其中a 、 b,、c可能是具體數,也可能是含待定字母或特定式子的代數式。

2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少。

3、一元二次方程根的判別式:當ax2+bx+c=0(a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

Δ>0 <=>有兩個不等的實根;Δ=0 <=>有兩個相等的實根;Δ<0 <=>無實根。

4、平均增長率問題——應用題的類型題之一(設增長率為x):

(1)第一年為a,第二年為a(1+x),第三年為a(1+x)2。

(2)常利用以下相等關系列方程:第三年=第三年或第一年+第二年+第三年=總和。

初三數學知識點歸納7

有理數、整式的加減、一元一次方程、圖形的初步認識。

(1)有理數:是初中數學的基礎內容,中考試題中分值約為3-6分,多以選擇題,填空題,計算題的形式出現,難易度屬于簡單。

【考察內容】復數以及混合運算(期中、期末必考計算)數軸、相反數、絕對值和倒數(選擇、填空)。

(2)整式的加減:中考試題中分值約為4分,題型以選擇和填空題為主,難易度屬于易。

【考察內容】

①整式的概念和簡單的運算,主要是同類項的概念和化簡求值

②完全平方公式,平方差公式的幾何意義

③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一學習重點內容,主要學習內容有(歸納、總結、延伸)應用題思維、步驟、文字題,根據已知條件求未知。中考分值約為1-3分,題型主要以選擇和填空題為主,極少出現簡答題,難易度為易。

【考察內容】

①方程及方程解的概念

②根據題意列一元一次方程

③解一元一次方程。題型:追擊、相遇、時間速度路程的關系、打折銷售、利潤公式。

(4)幾何:角和線段,為下冊學三角形打基礎

相交線和平行線、實數、平面直角坐標系、二元一次方程組、不等式和不等式組和數據庫的收集整理與描述。

(1)相交線和平行線:相交線和平行線是歷年中考中常見的考點。通常以填空,選擇題形式出現。分值為3-4分,難易度為易。

【考察內容】

①平行線的性質(公理)

②平行線的判別方法

③構造平行線,利用平行線的性質解決問題。

(2)平面直角坐標系:中考試題中分值約為3-4分,題型以選擇,填空為主,難易度屬于易。

【考察內容】

①考察平面直角坐標系內點的坐標特征

②函數自變量的取值范圍和球函數的值

③考察結合圖像對簡單實際問題中的函數關系進行分析。

(3)二元一次方程組:中考分值約為3-6分,題型主要以選擇,解答為主,難易度為中。

【考察內容】

①方程組的解法,解方程組

②根據題意列二元一次方程組解經濟問題。

(4)不等式和不等式組:中考試題中分值約為3-8分,選擇,填空,解答題為主。

【考察內容:】

①一元一次不等式(組)的解法,不等式(組)解集的數軸表示,不等式(組)的整數解等,題型以選擇,填空為主。

②列不等式(組)解決經濟問題,調配問題等,主要以解答題為主。

③留意不等式(組)和函數圖像的結合問題。

(5)數據庫的收集整理與描述

分值一般在6-10分,題型近幾年主要以解答題出現,偶爾以選擇填空出現。難易度為中。

【考察內容】

①常見統計圖和平均數,眾數,中位數的計算分析。

②方差,極差的應用分析

③與現實生活有關的實際問題的考察熱點。題目注重考查統計學的知識分析和數據處理。

三角形、全等三角形、軸對稱、整式的乘除與因式分解、分式。

(1)三角形:是初中數學的基礎,中考命題中的重點。中考試題分值約為18-24分,以填空,選擇,解答題,也會出現一些證明題目。

【考查內容】

①三角形的性質和概念,三角形內角和定理,三邊關系,以及三角形全等的性質與判定。

②三角形全等融入平行四邊形的證明

③三角形運動,折疊,旋轉,拼接形成的新數學問題

④等腰三角形的性質與判定,面積,周長等

⑤直角三角形的性質,勾股定理是重點

⑥三角形與圓的相關位置關系

⑦三角形中位線的性質應用

(2)全等三角形

(3)軸對稱:圖形的軸對稱是中考題的新題型,熱點題型。分值一般為3-4分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。

【考察內容】

①軸對稱和軸對稱圖形的性質判別。

②注意鏡面對稱與實際問題的解決。

(4)整式的乘除與因式分解:中考試題中分值約為4分,題型以選擇,填空為主,難易度屬于易。

【考察內容】

①整式的概念和簡單的運算,主要是同類項的概念和化簡求值

②完全平方公式,平方差公司的幾何意義

③利用提公因式法和公式法分解因式。

(5)分式:中考試題中分值約為6-8分,主要以填空,簡答計算題型出現,難易度屬于中。

【考察內容】

①分式的概念,性質,意義

②分式的運算,化簡求值。

③列分式方程解決實際問題。

二次根式、勾股定理、四邊形、一次函數和數據的分析。

(1)二次根式

(2)勾股定理:解直角三角形,解直角三角形的知識是近幾年各地中考命題的熱點之一,考察題型為選擇題,填空題,應用題為主,分值一般8-12分,難易度為難。

【考察內容】

①常見銳角的三角函數值的計算

②根據圖形計算距離,高度,角度的應用題

③根據題中給出的信息構建圖形,建立數學模型,然后用解直角三角形的知識解決問題。

(3)四邊形:初中數學中考中的重點內容之一,分值一般為10-14分,題型以選擇,填空,解答證明或融合在綜合題目中為主,難易度為中。

【考察內容】

①多邊形的內角和,外角和等問題

②圖形的鑲嵌問題

③平行四邊形,矩形,菱形,正方形,等腰梯形的性質和判定。

(4)一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。

【考察內容】

①會畫一次函數的圖像,并掌握其性質。

②會根據已知條件,利用待定系數法確定一次函數的解析式。

③能用一次函數解決實際問題。

④考察一次函數與二元一次方程組,一元一次不等式的關系。

(5)數據的分析

二次函數、一元二次方程、旋轉、圓和概率初步。

(1)二次函數:二次函數的圖像和性質是中考數學命題的熱點,難點。試題難度一般為難。常見選擇,填空題分值為3-5分,綜合題分值為10-12分。

【考察內容】

①能通過對實際問題情境的分析確定二次函數的表達式,并體會二次函數的意義。

②能用數形結合,歸納等熟悉思想,根據二次函數的表達式(圖像)確定二次的開口方向,對稱軸和頂點的坐標,并獲得更多信息。

③綜合運用方程,幾何圖形,函數等知識點解決問題。

(2)一元二次方程:中考分值約為3-5分,題型主要以選擇,填空為主,極少出現簡答,難易度為易。

【考察內容】

①方程及方程解的概念

②根據題意列一元一次方程

③解一元一次方程。

(3)旋轉:圖形的平移,旋轉是中考題的新題型,熱點題型,在試題比重,逐年上升。分值一般為5-8分,題型以填空,選擇,作圖為主,偶爾也會出現解答題。

【考察內容】

①中心對稱和中心對稱圖形的性質

②旋轉和平移的性質。

(4)圓:圓和圓的有關性質與圓的有關計算是近幾年各地中考命題的重點內容。題型以填空題,選擇題和解答題為主,也有以閱讀理解,條件開放,結論開放探索題作為新的題型,分值一般是6-12分,難易度為中。

【考察內容】

①圓的有關性質的應用。垂徑定理是重點。

②直線和圓,圓和圓的位置關系的判定及應用。

③弧長,扇形面積,圓柱,圓錐的側面積和全面積的計算

④圓與相似三角形,三角函數的綜合運用以及有關的開放題,探索題。

(5)概率初步:分值一般3-6分,題型以選擇,填空常見,更多以解答題目為主,難易度為中。

【考察內容】

①簡答事件的概率求解,圖表法和數形圖法

②利用概率解決實際,公平性問題等

③注意概率知識與方程相結合的綜合性試題,選材貼近生活,越來越新。

初三下冊

反比例函數、相似、銳角三角函數和投影與視圖。

(1)反比例函數:反比例函數的圖像和性質是中考數學命題的重要內容,試題新穎,題型靈活多樣,所占分值約為3-8分,難易度屬于難。

【考察內容】

①會畫反比例函數的圖像,掌握基本性質。

②能根據條件確定反比例函數的表達式。

③能用反比例函數解決實際問題。

(2)相似:圖形的形似是平面幾何中極為重要的內容,是中考數學中的重點考察內容。一般分值約為6-12分,題型以選擇,填空,解答綜合題目為主,難易度屬于難。

【考察內容】

①相似三角形的性質和判別方法,是重點。

②相似多邊形的認識,黃金分割的應用。

③相似形與三角形,平行四邊形的綜合性題目是難點。

(3)銳角三角函數

(4)投影與視圖:分值一般為3-6分,試題以填空,選擇,解答的形式出現。

【考察內容】

①常見幾何體的三視圖

②常見幾何體的展開和折疊,展開和折疊是考試的熱點,值得注意。

③利用相似結合平行投影和中心投影解決實際問題。

(不同地區分值不同,可供參考)

選擇題:3分一個,共14個,總分42分。

填空題:3分一個,共5個,總分15分。

解答題:共7題,總分63分。

(一)線段、角的計算與證明問題

中考中的簡答題一般是分為兩到三部分的。第一部分基本上都是簡單題和中檔題,目的在于考查基礎。第二部分第二部分往往就是開始拉分的中難題了。

(二)列方程(組)解決應用問題

在中考中,方程是初中數學當中最重要的部分,所以也是中考必考內容。從近年來中考來看,結合時事熱點考的比較多,所以還需要考生有一些實際生活經驗。

(三)閱讀理解問題

閱讀理解問題是中考中的一個亮點。閱讀理解往往是先給一個材料或介紹一個超綱的知識或給出一個針對某一種題目的解法,然后再給出條件出題。

(四)多種函數交叉綜合問題

初中接觸的函數主要有一次函數、二次函數和反比例函數。這類題目本身并不會太難,很少作為壓軸題目出現,一般都是作為一道中檔次題目出現來考查學生對函數的掌握。

(五)動態幾何

從歷年的中考來看,動態幾何往往作為壓軸的題目出現,得分率也是最低的。動態幾何一般分為兩類,一類是代數綜合方面,在坐標系中,動直線一般是用多種函數交叉求解。另一類是幾何綜合題,在梯形、矩形和三角形中設立動點,考查學生的綜合分析能力。

(六)圖形位置關系

中學數學當中,圖形位置關系主要包括點、線、三角形、矩形和正方形及它們之間的關系。在中考中會包括在函數、坐標系及幾何題中,其中最重要的是三角形的各種問題。

初三數學知識點歸納8

  全套教科書包含了課程標準(實驗稿)規定的“數與代數”“空間與圖形”“統計與概率”“實踐與綜合應用”四個領域的內容,在體系結構的設計上力求反映這些內容之間的聯系與綜合,使它們形成一個有機的整體。

  九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學習內容涉及到了《課程標準》的四個領域。本冊書內容分析如下:

  第21章二次根式

  學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關系。解決與數量關系有關的問題還會遇到二次根式。“二次根式”一章就來認識這種式子,探索它的性質,掌握它的運算。

  在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結論:

  注:關于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

  并運用它們進行二次根式的化簡。

  “二次根式的加減”一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節內容。

  第22章一元二次方程

  學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程。“一元二次方程”一章就來認識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。

  本章首先通過雕像設計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,

  “22.2降次——解一元二次方程”一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

  (1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對于沒有實數根的一元二次方程,學了“公式法”以后,學生對這個內容會有進一步的理解。

  (2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的.例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。

  “22.3實際問題與一元二次方程”一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。

  第23章旋轉

  學生已經認識了平移、軸對稱,探索了它們的性質,并運用它們進行圖案設計。本書中圖形變換又增添了一名新成員――旋轉。“旋轉”一章就來認識這種變換,探索它的性質。在此基礎上,認識中心對稱和中心對稱圖形。

  “23.1旋轉”一節首先通過實例介紹旋轉的概念。然后讓學生探究旋轉的性質。在此基礎上,通過例題說明作一個圖形旋轉后的圖形的方法。最后舉例說明用旋轉可以進行圖案設計。

  “23.2中心對稱”一節首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質。在此基礎上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關于原點對稱的點的坐標的關系,以及利用這一關系作與一個圖形成中心對稱的圖形的方法。

  “23.3課題學習圖案設計”一節讓學生探索圖形之間的變換關系(平移、軸對稱、旋轉及其組合),靈活運用平移、軸對稱、旋轉的組合進行圖案設計。

  第24章圓

  圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質,并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

  “24.1圓”一節首先介紹圓及其有關概念。然后讓學生探究與垂直于弦的直徑有關的結論,并運用這些結論解決問題。接下來,讓學生探究弧、弦、圓心角的關系,并運用上述關系解決問題。最后讓學生探究圓周角與圓心角的關系,并運用上述關系解決問題。

  “24.2與圓有關的位置關系”一節首先介紹點和圓的三種位置關系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關系、切線的概念以及與切線有關的結論。最后介紹圓和圓的位置關系。

  “24.3正多邊形和圓”一節揭示了正多邊形和圓的關系,介紹了等分圓周得到正多邊形的方法。

  “24.4弧長和扇形面積”一節首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。

  第25章概率初步

  將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

  “25.1概率”一節首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。

  “25.2用列舉法求概率”一節首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

  “25.3利用頻率估計概率”一節通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

  “25.4課題學習鍵盤上字母的排列規律”一節讓學生通過這一課題的研究體會概率的廣泛應用。

初三數學知識點歸納9

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  a,b,c為常數,a≠0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大,則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點式:y=a(x-h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點A(x ,0)和 B(x,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

初三數學知識點歸納10

1、必然事件、不可能事件、隨機事件的區別

2、概率

一般地,在大量重復試驗中,如果事件A發生的頻率

會穩定在某個常數p附近,那么這個常數p就叫做事件A的概率(probability),記作P(A)=p。

注意:(1)概率是隨機事件發生的可能性的大小的數量反映。

(2)概率是事件在大量重復試驗中頻率逐漸穩定到的值,即可以用大量重復試驗中事件發生的頻率去估計得到事件發生的概率,但二者不能簡單地等同。

3、求概率的方法

(1)用列舉法求概率(列表法、畫樹形圖法)

(2)用頻率估計概率:一大面,可用大量重復試驗中事件發生頻率來估計事件發生的概率。另一方面,大量重復試驗中事件發生的頻率穩定在某個常數(事件發生的概率)附近,說明概率是個定值,而頻率隨不同試驗次數而有所不同,是概率的近似值,二者不能簡單地等同。

初三數學知識點歸納11

一、反比例函數

1、形如y=k/x(k≠0)或y=kx^—1的函數叫做反比例函數,k叫做反比例系數。它的圖像是雙曲線。^—1表示負一次。

2、在函數y=k/x(k≠0),當k>0時,表達式中的想x、y符號相同,點(x,y)在第一、三象限,所以函數y=k/x(k≠0)的圖像位于第一、三象限;當k<0時,表達式中的想x、y符號相反,點(x,y)在第二、四象限,所以函數y=k/x(k≠0)的圖像位于第二、四象限。

3、在y=k/x(k≠0)中,當k>0時,在第一象限內,y隨著x的增大而減小;若y的值隨著x的值的增大而增大,則k的取值范圍是k<0。

4、設P(a,b)是反比例函數y=k/x(k≠0)上任意一點,則ab的值等于k。經過反比例函數上的任意一點P,分別向x軸、y軸作垂線段,則所成的矩形面積為k;過P點向x軸或y軸作垂線段,連接OP,則所成的三角形面積為k/2。

二、二次函數

1、形如y=ax^2+bx+c(a≠0,a、b、c為常數)。的函數叫做二次函數,它的圖像是一條拋物線。

2、二次函數y=ax^2+bx+c(a≠0)的頂點坐標為(—b/2a,4ac—b^2/4a),對稱軸是直線x=—b/2a。

3、對于二次函數y=ax^2+bx+c(a≠0),當a>0時,二次函數圖像向上開口;當a<0時,拋物線向下開口。圖像與y軸的交點的坐標是(0,c)。

4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函數y=ax^2+bx+c(a≠0)的圖像與x軸交點的橫坐標。

當b^2—4ac>0時,函數圖像與x軸有兩個交點。

當b^2—4ac=0時,函數圖像與x軸有一個交點。

當b^2—4ac<0時,函數圖像與x軸沒有交點。

5、當a>0,且x=—b/2a時,函數y=ax^2+bx+c(a≠0)取得最小值,這個值等于4ac—b^2/4a;當a<0,且x=—b/2a時,函數y=ax^2+bx+c(a≠0)取得值,這個值等于4ac—b^2/4a。

6、拋物線y=ax^2+c(a≠0)的對稱軸是y軸。

7、對于二次函數y=ax^2+bx+c(a≠0),若a,b同號,對稱軸在y軸右側a,b異號,對稱軸在y軸左側。

8、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤—b/2a時,y隨x的增大而減小;當x≥—b/2a時,y隨x的增大而增大。若a<0,當x≤—b/2a時,y隨x的增大而增大;當x≥—b/2a時,y隨x的增大而減小。

9、對于拋物線y=a(x—m)^2+k,左右平移時,只與m有關,往左是加,往右是減;上下平移時,只與k有關,往上是加,往下是減。

三、相似三角形

1、如果兩個數的比值與另兩個數的比值相等,就說這四個數成比例。

2、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。誰都不能為0。為0無意義。

3、一般的,如果三個數a,b,c滿足比例式a:b=b:c,則b就叫做a,c的比例中項。(如果是線段的話,只能取正的,如果是數,正負都可以)

4、黃金分割:把一條線段分割為兩部分,使其中一部分與全長之比等于另一部分與這部分之比。其比值是(√5—1)/2,取其前三位數字的近似值是0.618。

5、證明三角形相似的方法:

(1)平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。照我們老師的方法來說就是A字型和8字型。

(2)如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。

(3)如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么這兩個三角形相似。

(4)如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似。

(5)對應角相等,對應邊成比例的兩個三角形叫做相似。

初三數學知識點歸納12

一、求復雜事件的概率:

1.有些隨機事件不可能用樹狀圖和列表法求其發生的概率,只能用試驗、統計的方法估計其發生的概率。

2.對于作何一個隨機事件都有一個固定的概率客觀存在。

3.對隨機事件做大量試驗時,根據重復試驗的特征,我們確定概率時應當注意幾點:

(1)盡量經歷反復實驗的過程,不能想當然的作出判斷;

(2)做實驗時應當在相同條件下進行;

(3)實驗的次數要足夠多,不能太少;

(4)把每一次實驗的結果準確,實時的做好記錄;

(5)分階段分別從第一次起計算,事件發生的頻率,并把這些頻率用折線統計圖直觀的表示出來;

(6)觀察分析統計圖,找出頻率變化的逐漸穩定值,并用這個穩定值估計事件發生的概率,這種估計概率的方法的優點是直觀,缺點是估計值必須在實驗后才能得到,無法事件預測。

二、判斷游戲公平:

游戲對雙方公平是指雙方獲勝的可能性相同。

三、概率綜合運用:

概率可以和很多知識綜合命題,主要涉及平面圖形、統計圖、平均數、中位數、眾數、函數等。

以上是關于“初三數學知識點歸納”分享,想了解更多“總結”就上騰游文庫(m.8226678.com/wenku/)

本站資源均為網友上傳分享,本站僅負責分類整理,如有任何問題可聯系我們(點這里聯系)反饋。

Like (0)

相關推薦

發表回復

Please Login to Comment
主站蜘蛛池模板: 离岛区| 布尔津县| 遂溪县| 比如县| 女性| 东安县| 武山县| 余干县| 宁波市| 阿拉善右旗| 吉木乃县| 岫岩| 棋牌| 华坪县| 黄石市| 蚌埠市| 嘉义县| 大渡口区| 三台县| 肃宁县| 漯河市| 江源县| 确山县| 普洱| 徐州市| 红原县| 桦川县| 封丘县| 石门县| 隆昌县| 榆社县| 怀安县| 博乐市| 南郑县| 永平县| 永城市| 乌拉特前旗| 塘沽区| 略阳县| 林西县| 随州市|